Scientific Reports (Jan 2018)

A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis

  • Katy M. Roach,
  • Amanda Sutcliffe,
  • Laura Matthews,
  • Gill Elliott,
  • Chris Newby,
  • Yassine Amrani,
  • Peter Bradding

DOI
https://doi.org/10.1038/s41598-017-18555-9
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited therapeutic options. KCa3.1 ion channels play a critical role in TGFβ1-dependent pro-fibrotic responses in human lung myofibroblasts. We aimed to develop a human lung parenchymal model of fibrogenesis and test the efficacy of the selective KCa3.1 blocker senicapoc. 2 mm3 pieces of human lung parenchyma were cultured for 7 days in DMEM ± TGFβ1 (10 ng/ml) and pro-fibrotic pathways examined by RT-PCR, immunohistochemistry and collagen secretion. Following 7 days of culture with TGFβ1, 41 IPF- and fibrosis-associated genes were significantly upregulated. Immunohistochemical staining demonstrated increased expression of ECM proteins and fibroblast-specific protein after TGFβ1-stimulation. Collagen secretion was significantly increased following TGFβ1-stimulation. These pro-fibrotic responses were attenuated by senicapoc, but not by dexamethasone. This 7 day ex vivo model of human lung fibrogenesis recapitulates pro-fibrotic events evident in IPF and is sensitive to KCa3.1 channel inhibition. By maintaining the complex cell-cell and cell-matrix interactions of human tissue, and removing cross-species heterogeneity, this model may better predict drug efficacy in clinical trials and accelerate drug development in IPF. KCa3.1 channels are a promising target for the treatment of IPF.