Advanced Electromagnetics (Aug 2016)
Light Spins of Cylindrical Electromagnetic Waves and their Jumps across Material Interfaces in the Presence of Energy Exchange
Abstract
We investigate light spins for cylindrical electromagnetic waves on resonance. To this goal, we consider both a dielectric cylinder of infinite length immersed in vacuum and a cylindrical hole punched through a dense dielectric medium. In order for waves of constant frequencies to be established through lossless media, energy absorption is allowed in the surrounding medium to compensate for radiation loss. The dispersion relation is then numerically solved for an asymmetry parameter implying a balance in energy exchange. Numerical studies are performed by varying parameters of refractive index contrast, azimuthal mode index, and size parameter of a cylindrical object. The resulting data is presented mostly in terms of a specific spin, defined as light spin per energy density. This specific spin is found to be bounded in its magnitude, with its maximum associated with either optical vortices or large rotations. Depending on parametric combinations, the specific spin could not only undergo finite jumps across the material interface but also exhibit limit behaviors.
Keywords