Atmospheric Chemistry and Physics (Nov 2011)

Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide

  • M. O. Battle,
  • J. P. Severinghaus,
  • E. D. Sofen,
  • D. Plotkin,
  • A. J. Orsi,
  • M. Aydin,
  • S. A. Montzka,
  • T. Sowers,
  • P. P. Tans

DOI
https://doi.org/10.5194/acp-11-11007-2011
Journal volume & issue
Vol. 11, no. 21
pp. 11007 – 11021

Abstract

Read online

We sampled interstitial air from the perennial snowpack (firn) at a site near the West Antarctic Ice Sheet Divide (WAIS-D) and analyzed the air samples for a wide variety of gas species and their isotopes. We find limited convective influence (1.4–5.2 m, depending on detection method) in the shallow firn, gravitational enrichment of heavy species throughout the diffusive column in general agreement with theoretical expectations, a ~10 m thick lock-in zone beginning at ~67 m, and a total firn thickness consistent with predictions of Kaspers et al. (2004). Our modeling work shows that the air has an age spread (spectral width) of 4.8 yr for CO<sub>2</sub> at the firn-ice transition. We also find that advection of firn air due to the 22 cm yr<sup>&minus;1</sup> ice-equivalent accumulation rate has a minor impact on firn air composition, causing changes that are comparable to other modeling uncertainties and intrinsic sample variability. Furthermore, estimates of &Delta;age (the gas age/ice age difference) at WAIS-D appear to be largely unaffected by bubble closure above the lock-in zone. Within the lock-in zone, small gas species and their isotopes show evidence of size-dependent fractionation due to permeation through the ice lattice with a size threshold of 0.36 nm, as at other sites. We also see an unequivocal and unprecedented signal of oxygen isotope fractionation within the lock-in zone, which we interpret as the mass-dependent expression of a size-dependent fractionation process.