Combined electrokinetic manipulations of pathogenic bacterial samples in low-cost fabricated dielectrophoretic devices
Alejandro Martínez-Brenes,
Karina Torres-Castro,
Richard Marín-Benavides,
Katherine Acuña-Umaña,
Christopher Espinoza-Araya,
Raquel Ramírez-Carranza,
Gabriela González-Espinoza,
Norman Rojas-Campos,
Caterina Guzmán-Verri,
Giovanni Sáenz-Arce,
Leonardo Lesser-Rojas
Affiliations
Alejandro Martínez-Brenes
Maestría en Ingeniería en Dispositivos Médicos, Escuela de Ciencia e Ingeniería de los Materiales, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica
Karina Torres-Castro
Maestría en Electrónica con Énfasis en MEMS, Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica
Richard Marín-Benavides
Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, 11529 Taipei, Taiwan
Katherine Acuña-Umaña
Laboratorio de Nano Bio Sistemas, Centro de Investigación en Ciencias Atómicas y Moleculares, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
Christopher Espinoza-Araya
Laboratorio de Materiales Industriales, Departamento de Física, Universidad Nacional, 86-3000 Heredia, Costa Rica
Raquel Ramírez-Carranza
Laboratorio de Nano Bio Sistemas, Centro de Investigación en Ciencias Atómicas y Moleculares, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
Gabriela González-Espinoza
Centro de Investigación en Enfermedades Tropicales, Escuela de Microbiología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
Norman Rojas-Campos
Centro de Investigación en Enfermedades Tropicales, Escuela de Microbiología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
Caterina Guzmán-Verri
Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, 304-3000 Heredia, Costa Rica
Giovanni Sáenz-Arce
Laboratorio de Materiales Industriales, Departamento de Física, Universidad Nacional, 86-3000 Heredia, Costa Rica
Leonardo Lesser-Rojas
Laboratorio de Nano Bio Sistemas, Centro de Investigación en Ciencias Atómicas y Moleculares, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
A low-cost fabrication method of microfluidic devices with micrometer-sized constrictions used for electrodeless dielectrophoresis (eDEP) is demonstrated here. A structure on a commercial printed circuit board (PCB) template of one-sided copper clad fiberglass-epoxy laminate was used as a molding master for polydimethylsiloxane (PDMS) soft lithography. This was achieved by printing a constriction-based microchannel pattern on glossy paper with a micrometer-scaled resolution laser printer and transferring it to the laminate’s Cu face, rendering a microstructure of ∼17 µm height and various widths across tips. The Cu master’s pattern was transferred to PDMS, and smooth constrictions were observed under the microscope. Following air plasma encapsulation, PDMS chips were loaded with an inactivated bacterial sample of fluorescently stained Brucella abortus vaccine strain S-19 and connected to an amplified voltage source to examine the sample’s response to electric field variations. After an AC/DC electric field was applied to the bacterial solution in the microfluidic device, the combined effect of electrokinetic + hydrodynamic mechanisms that interact near the dielectric microconstrictions and exert forces to the sample was observed and later confirmed by COMSOL simulations. Our fabrication method is an alternative to be used when there is no access to advanced microfabrication facilities and opens ways for target selection and preconcentration of intracellular pathogens as well as sample preparation for metagenomics.