Epidemics (Jun 2020)

Designing a typhoid environmental surveillance study: A simulation model for optimum sampling site allocation

  • Yuke Wang,
  • Christine L. Moe,
  • Shanta Dutta,
  • Ashutosh Wadhwa,
  • Suman Kanungo,
  • Wolfgang Mairinger,
  • Yichuan Zhao,
  • Yi Jiang,
  • Peter FM. Teunis

Journal volume & issue
Vol. 31

Abstract

Read online

Environmental surveillance can be used for monitoring enteric disease in a population by detecting pathogens, shed by infected people, in sewage. Detection of pathogens depends on many factors: infection rates and shedding in the population, pathogen fate in the sewerage network, and also sampling sites, sample size, and assay sensitivity. This complexity makes the design of sampling strategies challenging, which creates a need for mathematical modeling to guide decision making.In the present study, a model was developed to simulate pathogen shedding, pathogen transport and fate in the sewerage network, sewage sampling, and detection of the pathogen. The simulation study used Salmonella enterica serovar Typhi (S. Typhi) as the target pathogen and two wards in Kolkata, India as the study area. Five different sampling strategies were evaluated for their sensitivity of detecting S. Typhi, by sampling unit: sewage pumping station, shared toilet, adjacent multiple shared toilets (primary sampling unit), pumping station + shared toilets, pumping station + primary sampling units. Sampling strategies were studied in eight scenarios with different geographic clustering of risk, pathogen loss (decay, leakage), and sensitivity of detection assays. A novel adaptive sampling site allocation method was designed, that updates the locations of sampling sites based on their performance. We then demonstrated how the simulation model can be used to predict the performance of environmental surveillance and how it is improved by optimizing the allocation of sampling sites.The results are summarized as a decision tree to guide the sampling strategy based on disease incidence, geographic distribution of risk, pathogen loss, and the sensitivity of the detection assay. The adaptive sampling site allocation method consistently outperformed alternatives with fixed site locations in most scenarios. In some cases, the optimum allocation method increased the median sensitivity from 45% to 90% within 20 updates.

Keywords