Remote Sensing (Oct 2024)
Land Subsidence Detection Using SBAS- and Stacking-InSAR with Zonal Statistics and Topographic Correlations in Lakhra Coal Mines, Pakistan
Abstract
The adverse combination of excessive mining practices and the resulting land subsidence is a significant obstacle to the sustainable growth and stability of regions associated with mining activities. The Lakhra coal mines, which contain some of Pakistan’s largest coal deposits, have been overlooked in land subsidence monitoring, indicating a considerable oversight in the region. Subsidence in mining areas can be spotted early when using Interferometric Synthetic Aperture Radar (InSAR), which can precisely monitor ground changes over time. This study is the first to employ the Small Baseline Subset (SBAS)-InSAR and stacking-InSAR techniques to identify land subsidence at the Lakhra coal mines. This research offers critical insights into subsidence mechanisms in the study area, which has never been previously investigated for ground deformation monitoring, by utilizing 150 Sentinel-1A (ascending) images obtained between January 2018 and September 2023. A total of 102 deformation spots were identified using SBAS-InSAR, while stacking-InSAR detected 73 deformation locations. The most extensive cumulative subsidence in the Lakhra coal mine was −114 mm, according to SBAS-InSAR, with a standard deviation of 6.63 mm. In comparison, a subsidence rate of −19 mm/year was reported using stacking-InSAR with a standard deviation of 1.17 mm/year. The rangeland covered 88.8% of the total area and exhibited the most significant deformation values, as determined by stacking and SBAS-InSAR techniques. Linear regression showed that there was not a strong correlation between subsidence and topographic factors. As detected by optical remote sensing data, the subsidence locations were near or above the mines in the research area, indicating that widespread mining in Lakhra coal mines was the cause of subsidence. Our findings suggest that SAR interferometric time series analysis is helpful for proactively identifying and controlling subsidence difficulties in mining regions by closely monitoring activities, hence reducing negative consequences on operations and the environment.
Keywords