BMC Musculoskeletal Disorders (Mar 2024)

Identification of key genes and immune infiltration in osteoarthritis through analysis of zinc metabolism-related genes

  • Xiaoxuan You,
  • Yanbo Ye,
  • Shufeng Lin,
  • Zefeng Zhang,
  • Huiyang Guo,
  • Hui Ye

DOI
https://doi.org/10.1186/s12891-024-07347-8
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Osteoarthritis (OA) represents a prominent etiology of considerable pain and disability, and conventional imaging methods lack sensitivity in diagnosing certain types of OA. Therefore, there is a need to identify highly sensitive and efficient biomarkers for OA diagnosis. Zinc ions feature in the pathogenesis of OA. This work aimed to investugate the role of zinc metabolism-related genes (ZMRGs) in OA and the diagnostic characteristics of key genes. Methods We obtained datasets GSE169077 and GSE55235 from the Gene Expression Omnibus (GEO) and obtained ZMRGs from MSigDB. Differential expression analysis was conducted on the GSE169077 dataset using the limma R package to identify differentially expressed genes (DEGs), and the intersection of DEGs and ZMRGs yielded zinc metabolism differential expression-related genes (ZMRGs-DEGs). The clusterProfiler R package was employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of ZMRGs-DEGs. Potential small molecule drugs were predicted using the CMap database, and immune cell infiltration and function in OA individuals were analyzed using the ssGSEA method. Protein-protein interaction (PPI) networks were constructed to detect Hub genes among ZMRGs-DEGs. Hub gene expression levels were analyzed in the GSE169077 and GSE55235 datasets, and their diagnostic characteristics were assessed using receiver operating characteristic (ROC) curves. The gene-miRNA interaction network of Hub genes was explored using the gene-miRNA interaction network website. Results We identified 842 DEGs in the GSE169077 dataset, and their intersection with ZMRGs resulted in 46 ZMRGs-DEGs. ZMRGs-DEGs were primarily enriched in functions such as collagen catabolic processes, extracellular matrix organization, metallopeptidase activity, and pathways like the IL-17 signaling pathway, Nitrogen metabolism, and Relaxin signaling pathway. Ten potential small-molecule drugs were predicted using the CMap database. OA patients exhibited distinct immune cell abundance and function compared to healthy individuals. We identified 4 Hub genes (MMP2, MMP3, MMP9, MMP13) through the PPI network, which were highly expressed in OA and demonstrated good diagnostic performance. Furthermore, two closely related miRNAs for each of the 4 Hub genes were identified. Conclusion 4 Hub genes were identified as potential diagnostic biomarkers and therapeutic targets for OA.

Keywords