Journal of High Energy Physics (Feb 2024)

De Sitter space is sometimes not empty

  • Vijay Balasubramanian,
  • Yasunori Nomura,
  • Tomonori Ugajin

DOI
https://doi.org/10.1007/JHEP02(2024)135
Journal volume & issue
Vol. 2024, no. 2
pp. 1 – 46

Abstract

Read online

Abstract Multiple lines of evidence suggest that the Hilbert space of an isolated de Sitter universe is one dimensional but can appear larger when probed by a gravitating observer. To test this idea, we compute the von Neumann entropy of a field theory in a two-dimensional de Sitter universe which is entangled in a thermal-like state with the same field theory on a disjoint, asymptotically anti-de Sitter (AdS) black hole. Previously, it was shown that the replica trick for computing the entropy of such entangled gravitating systems requires the inclusion of a non-perturbative effect in quantum gravity — novel wormholes connecting the two spaces. Here we show that: (a) the expected wormholes connecting de Sitter and AdS universes exist, avoiding a no-go theorem via the presence of sources on the AdS boundary; (b) the entanglement entropy vanishes if the nominal entropy of the de Sitter cosmological horizon S dS = A horizon dS / 4 G N $$ \left({S}_{\textrm{dS}}={A}_{\textrm{horizon}}^{\textrm{dS}}/4{G}_{\textrm{N}}\right) $$ is less than the entropy of the AdS black hole horizon S BH = A horizon AdS / 4 G N $$ \left({S}_{\textrm{BH}}={A}_{\textrm{horizon}}^{\textrm{AdS}}/4{G}_{\textrm{N}}\right) $$ , i.e., S dS S BH. Thus, the de Sitter Hilbert space is effectively nontrivial only when S dS > S BH. The AdS black hole we introduce can be regarded as an “observer” for de Sitter space. In this sense, our result is a non-perturbative generalization of the recent perturbative argument that the algebra of observables on the de Sitter static patch becomes nontrivial in the presence of an observer.

Keywords