Physical Review Research (Aug 2023)

Exceptional-point-assisted entanglement, squeezing, and reset in a chain of three superconducting resonators

  • Wallace S. Teixeira,
  • Vasilii Vadimov,
  • Timm Mörstedt,
  • Suman Kundu,
  • Mikko Möttönen

DOI
https://doi.org/10.1103/PhysRevResearch.5.033119
Journal volume & issue
Vol. 5, no. 3
p. 033119

Abstract

Read online Read online

The interplay between coherent and dissipative dynamics required in various control protocols of quantum technology has motivated studies of open-system degeneracies, referred to as exceptional points (EPs). Here, we introduce a scheme for fast quantum-state synthesis using exceptional-point engineering in a lossy chain of three superconducting resonators. We theoretically find that the rich physics of EPs can be used to identify regions in the parameter space that favor a fast and quasistable transfer of squeezing and entanglement or a fast reset of the system. For weakly interacting resonators with the coupling strength g, the obtained quasistabilization timescales are identified as 1/(2sqrt[2]g), and reset infidelities below 10^{−5} are obtained with a waiting time of roughly 6/g in the case of weakly squeezed resonators. Our results shed light on the role of EPs in multimode Gaussian systems and pave the way for optimized distribution of squeezing and entanglement between different nodes of a photonic network using dissipation as a resource.