International Journal of Photoenergy (Jan 2014)

Synthesis and Characterization of a Photoelectrode with a Novel 3D Structure for Dye-Sensitized Solar Cells

  • Kun-Ching Cho,
  • Ho Chang,
  • Tien-Li Chen,
  • Chung-Yi Wu

DOI
https://doi.org/10.1155/2014/913108
Journal volume & issue
Vol. 2014

Abstract

Read online

This study designs a novel dye-sensitized solar cell (DSSC) in which the photoanode is derived from its three-dimensional (3D) structure. The inside of the cell has a positive illumination structure, with the purposes of increasing the area of photoelectrode thin film and of increasing the illuminated area within a fixed area in order to achieve the objective of enhancing the photoelectric conversion efficiency of cell. For the cell structure experiment, the study uses graphite paper, carbon and platinum as counter electrode materials, and then conducts measurement with cell heights of 3 mm, 5 mm, and 7 mm. The electrolyte used is a gel polymer electrolyte. The assembly of the cell is divided into vertical assembly, inclined assembly, and tandem assembly. In the 3D tandem cell experiment, the counter electrode material is platinum. Experimental results show that when cell height is 7 mm and illuminated area is 0.28 cm2, open-loop voltage is 0.662 V, short-circuit current density is 18.42 mA/cm2, fill factor is 0.31, and the photoelectric conversion efficiency is 3.85%, which is 1.65 times that under vertical assembly (2.34%) and 2.15 times that of the flat cell (1.79%).