IUCrJ (Mar 2022)
Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging
- Yulong Zhuang,
- Salah Awel,
- Anton Barty,
- Richard Bean,
- Johan Bielecki,
- Martin Bergemann,
- Benedikt J. Daurer,
- Tomas Ekeberg,
- Armando D. Estillore,
- Hans Fangohr,
- Klaus Giewekemeyer,
- Mark S. Hunter,
- Mikhail Karnevskiy,
- Richard A. Kirian,
- Henry Kirkwood,
- Yoonhee Kim,
- Jayanath Koliyadu,
- Holger Lange,
- Romain Letrun,
- Jannik Lübke,
- Abhishek Mall,
- Thomas Michelat,
- Andrew J. Morgan,
- Nils Roth,
- Amit K. Samanta,
- Tokushi Sato,
- Zhou Shen,
- Marcin Sikorski,
- Florian Schulz,
- John C. H. Spence,
- Patrik Vagovic,
- Tamme Wollweber,
- Lena Worbs,
- P. Lourdu Xavier,
- Oleksandr Yefanov,
- Filipe R. N. C. Maia,
- Daniel A. Horke,
- Jochen Küpper,
- N. Duane Loh,
- Adrian P. Mancuso,
- Henry N. Chapman,
- Kartik Ayyer
Affiliations
- Yulong Zhuang
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Anton Barty
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Richard Bean
- European XFEL, 22869 Schenefeld, Germany
- Johan Bielecki
- European XFEL, 22869 Schenefeld, Germany
- Martin Bergemann
- European XFEL, 22869 Schenefeld, Germany
- Benedikt J. Daurer
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
- Tomas Ekeberg
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- Armando D. Estillore
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hans Fangohr
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Klaus Giewekemeyer
- European XFEL, 22869 Schenefeld, Germany
- Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Mikhail Karnevskiy
- European XFEL, 22869 Schenefeld, Germany
- Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Henry Kirkwood
- European XFEL, 22869 Schenefeld, Germany
- Yoonhee Kim
- European XFEL, 22869 Schenefeld, Germany
- Jayanath Koliyadu
- European XFEL, 22869 Schenefeld, Germany
- Holger Lange
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Romain Letrun
- European XFEL, 22869 Schenefeld, Germany
- Jannik Lübke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Thomas Michelat
- European XFEL, 22869 Schenefeld, Germany
- Andrew J. Morgan
- Department of Physics, University of Melbourne, Victoria 3010, Australia
- Nils Roth
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Amit K. Samanta
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Tokushi Sato
- European XFEL, 22869 Schenefeld, Germany
- Zhou Shen
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
- Marcin Sikorski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Florian Schulz
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Tamme Wollweber
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Lena Worbs
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- P. Lourdu Xavier
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Filipe R. N. C. Maia
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- Daniel A. Horke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- N. Duane Loh
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
- Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Kartik Ayyer
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- DOI
- https://doi.org/10.1107/S2052252521012707
- Journal volume & issue
-
Vol. 9,
no. 2
pp. 204 – 214
Abstract
One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand–maximize–compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.
Keywords