Journal of Genetic Engineering and Biotechnology (Nov 2020)

Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses

  • Amit Joshi,
  • G. Sunil Krishnan,
  • Vikas Kaushik

DOI
https://doi.org/10.1186/s43141-020-00095-x
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background At present, viral diseases become major concern for the world. SARS-CoV2 and SFTS viruses are deadly in nature, and there is a need for developing best treatments for them. Modern in silico approaches were found to be very handy in determining putative drug molecules. In this study, we analyze interaction of beta-sesquiphellandrene (compound belongs to ginger) with spike protein (Sp) and membrane glycoprotein polyprotein (MPp). Results Our molecular docking and simulation study reveals the perfect binding pocket of Sp and MPp holding beta-sesquiphellandrene (bS). Binding energies for MPp-bS and Sp-bS were found to be − 9.5 kcal/mol and − 10.3 kcal/mol respectively. RMSD and RMSF values for docked complexes were found to be in selectable range, i.e., 1 to 3 Å and 1 to 8 Å respectively. Modern computational tools were used here to make this investigation fast and effective. Further, ADME analysis reveals the therapeutic validations for beta-sesquiphellandrene to act as a useful pharmacoactive compound. Beta-sesquiphellandrene provides not only inhibitory effect on spike protein of SARS-CoV2 but also similar inhibitory effects on membrane glycoprotein polyprotein complex of SFTS virus, which hampers the pathological initiation of the diseases caused by both the viruses, i.e., COVID-19 and severe fever with thrombocytopenia syndrome. Conclusion This method of computational analysis was found to be rapid and effective, and opens new doors in the domain of in silico drug discovery. Beta-sesquiphellandrene can be used as effective medicine to control these harmful pathogens after wet lab validations.

Keywords