International Journal of Differential Equations (Jan 2014)

Normal Hyperbolicity and Continuity of Global Attractors for a Nonlocal Evolution Equations

  • Severino Horácio da Silva,
  • Jocirei Dias Ferreira,
  • Flank David Morais Bezerra

DOI
https://doi.org/10.1155/2014/625271
Journal volume & issue
Vol. 2014

Abstract

Read online

We show the normal hyperbolicity property for the equilibria of the evolution equation ∂m(r,t)/∂t=-m(r,t)+g(βJ*m(r,t)+βh), h,β≥0, and using the normal hyperbolicity property we prove the continuity (upper semicontinuity and lower semicontinuity) of the global attractors of the flow generated by this equation, with respect to functional parameter J.