Macromol (Dec 2022)

A Review of Xyloglucan: Self-Aggregation, Hydrogel Formation, Mucoadhesion and Uses in Medical Devices

  • J. Esquena-Moret

DOI
https://doi.org/10.3390/macromol2040037
Journal volume & issue
Vol. 2, no. 4
pp. 562 – 590

Abstract

Read online

The present paper reviews the self-aggregation, gel-forming and adsorption properties of xyloglucan (XG), and its main applications as a medical device for wound dressings, mucosal protection and ocular lubrication, as well as its uses as an excipient. XG is a branched polysaccharide composed of a central backbone of D-glucose units linked by β(1→4)-glycosidic bonds, decorated with D-xylose units through α(1→6) glycosidic bonds, and with some D-galactose units anchored to these D-xylose units via β(1→2) bonds. XG forms self-aggregates with a hierarchically ordered morphology in aqueous solutions, leading to the formation of nanofibers. Consequently, XG is a hydrogel-forming polymer able to retain large amounts of water. Inside the human digestive tract, XG is enzymatically degalactosylated, but the backbone with xylose side chains remains stable until excretion. Degalactosylated XG undergoes a fully reversible sol–gel transition, forming hydrogels between upper and lower critical temperatures. XG adsorbs on intestinal mucosa and creates a diffusion barrier that reduces permeability and also prevents bacterial infections by reducing their infiltration. Therefore, orally administered XG is considered a mucosa protectant.

Keywords