Journal of Renewable Energy (Jan 2013)

Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow

  • Mohammad A. Hossain,
  • Ziaul Huque,
  • Raghava R. Kammalapati

DOI
https://doi.org/10.1155/2013/653103
Journal volume & issue
Vol. 2013

Abstract

Read online

The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL) phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8) has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp) as well as the lift (CL) and drag coefficients (CD). A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.