Sensors (Nov 2018)

A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection

  • Daniel Evans,
  • Konstantinos I. Papadimitriou,
  • Nikolaos Vasilakis,
  • Panagiotis Pantelidis,
  • Peter Kelleher,
  • Hywel Morgan,
  • Themistoklis Prodromakis

DOI
https://doi.org/10.3390/s18114011
Journal volume & issue
Vol. 18, no. 11
p. 4011

Abstract

Read online

Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H2O2 depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes.

Keywords