Kynurenine and Hemoglobin as Sex-Specific Variables in COVID-19 Patients: A Machine Learning and Genetic Algorithms Approach
Jose M. Celaya-Padilla,
Karen E. Villagrana-Bañuelos,
Juan José Oropeza-Valdez,
Joel Monárrez-Espino,
Julio E. Castañeda-Delgado,
Ana Sofía Herrera-Van Oostdam,
Julio César Fernández-Ruiz,
Fátima Ochoa-González,
Juan Carlos Borrego,
Jose Antonio Enciso-Moreno,
Jesús Adrián López,
Yamilé López-Hernández,
Carlos E. Galván-Tejada
Affiliations
Jose M. Celaya-Padilla
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico
Karen E. Villagrana-Bañuelos
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico
Juan José Oropeza-Valdez
Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Centro, Zacatecas 98000, Mexico
Joel Monárrez-Espino
Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García 66238, Mexico
Julio E. Castañeda-Delgado
Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Centro, Zacatecas 98000, Mexico
Ana Sofía Herrera-Van Oostdam
Doctorado en Ciencias Biomédicas Básicas, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
Julio César Fernández-Ruiz
Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Centro, Zacatecas 98000, Mexico
Fátima Ochoa-González
Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Centro, Zacatecas 98000, Mexico
Juan Carlos Borrego
Departamento de Epidemiología, Hospital General de Zona #1 “Emilio Varela Luján”, Instituto Mexicano del Seguro Social, Centro, Zacatecas 98000, Mexico
Jose Antonio Enciso-Moreno
Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Centro, Zacatecas 98000, Mexico
Jesús Adrián López
Laboratorio de MicroRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
Yamilé López-Hernández
Cátedras-CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
Carlos E. Galván-Tejada
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico
Differences in clinical manifestations, immune response, metabolic alterations, and outcomes (including disease severity and mortality) between men and women with COVID-19 have been reported since the pandemic outbreak, making it necessary to implement sex-specific biomarkers for disease diagnosis and treatment. This study aimed to identify sex-associated differences in COVID-19 patients by means of a genetic algorithm (GALGO) and machine learning, employing support vector machine (SVM) and logistic regression (LR) for the data analysis. Both algorithms identified kynurenine and hemoglobin as the most important variables to distinguish between men and women with COVID-19. LR and SVM identified C10:1, cough, and lysoPC a 14:0 to discriminate between men with COVID-19 from men without, with LR being the best model. In the case of women with COVID-19 vs. women without, SVM had a higher performance, and both models identified a higher number of variables, including 10:2, lysoPC a C26:0, lysoPC a C28:0, alpha-ketoglutaric acid, lactic acid, cough, fever, anosmia, and dysgeusia. Our results demonstrate that differences in sexes have implications in the diagnosis and outcome of the disease. Further, genetic and machine learning algorithms are useful tools to predict sex-associated differences in COVID-19.