Journal of Advanced Transportation (Jan 2020)
Stochastic Electric Vehicle Network with Elastic Demand and Environmental Costs
Abstract
Along with the increasing number of the electric vehicles (EVs), an urban transportation network with a large number of EVs will come true in the near future. Since many countries encourage EVs due to their environmental-friendly benefits, the environmental costs of vehicles have attracted much attention in recent years. In this paper, besides the environmental costs, we take into account the issues of the stochastic user equilibrium (SUE), the elastic demand (ED), and the driving range of EVs in the network. We propose an SUE with ED (SUEED) problem to consider these issues in the urban transportation network with EVs. An SUEED model is developed. We also propose a method of successive average (MSA) to solve the SUEED problem. The computational feasibility of the algorithm is tested in a large-scale network. Through a comparison analysis, we show the benefits of introducing EVs into the urban transportation network in the SUEED circumstance. Moreover, a sensitivity analysis is conducted to reveal the potential values of EVs against the development of EVs. The results suggest that EVs may help to reduce both the travelers’ travel costs and the environmental costs of the entire network.