Journal of Medical Internet Research (Aug 2023)
Initiatives, Concepts, and Implementation Practices of the Findable, Accessible, Interoperable, and Reusable Data Principles in Health Data Stewardship: Scoping Review
Abstract
BackgroundThorough data stewardship is a key enabler of comprehensive health research. Processes such as data collection, storage, access, sharing, and analytics require researchers to follow elaborate data management strategies properly and consistently. Studies have shown that findable, accessible, interoperable, and reusable (FAIR) data leads to improved data sharing in different scientific domains. ObjectiveThis scoping review identifies and discusses concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in health research data. MethodsThe Arksey and O’Malley stage-based methodological framework for scoping reviews was applied. PubMed, Web of Science, and Google Scholar were searched to access relevant publications. Articles written in English, published between 2014 and 2020, and addressing FAIR concepts or practices in the health domain were included. The 3 data sources were deduplicated using a reference management software. In total, 2 independent authors reviewed the eligibility of each article based on defined inclusion and exclusion criteria. A charting tool was used to extract information from the full-text papers. The results were reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. ResultsA total of 2.18% (34/1561) of the screened articles were included in the final review. The authors reported FAIRification approaches, which include interpolation, inclusion of comprehensive data dictionaries, repository design, semantic interoperability, ontologies, data quality, linked data, and requirement gathering for FAIRification tools. Challenges and mitigation strategies associated with FAIRification, such as high setup costs, data politics, technical and administrative issues, privacy concerns, and difficulties encountered in sharing health data despite its sensitive nature were also reported. We found various workflows, tools, and infrastructures designed by different groups worldwide to facilitate the FAIRification of health research data. We also uncovered a wide range of problems and questions that researchers are trying to address by using the different workflows, tools, and infrastructures. Although the concept of FAIR data stewardship in the health research domain is relatively new, almost all continents have been reached by at least one network trying to achieve health data FAIRness. Documented outcomes of FAIRification efforts include peer-reviewed publications, improved data sharing, facilitated data reuse, return on investment, and new treatments. Successful FAIRification of data has informed the management and prognosis of various diseases such as cancer, cardiovascular diseases, and neurological diseases. Efforts to FAIRify data on a wider variety of diseases have been ongoing since the COVID-19 pandemic. ConclusionsThis work summarises projects, tools, and workflows for the FAIRification of health research data. The comprehensive review shows that implementing the FAIR concept in health data stewardship carries the promise of improved research data management and transparency in the era of big data and open research publishing. International Registered Report Identifier (IRRID)RR2-10.2196/22505