Enhanced Reaching-Law-Based Discrete-Time Terminal Sliding Mode Current Control of a Six-Phase Induction Motor
Yassine Kali,
Jorge Rodas,
Jesus Doval-Gandoy,
Magno Ayala,
Osvaldo Gonzalez
Affiliations
Yassine Kali
Power Electronics and Industrial Control Research Group (GRÉPCI), École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
Jorge Rodas
Laboratory of Power and Control Systems (LSPyC), Departamento de Ingeniería Electrónica y Mecatrónica (DIEM), Facultad de Ingeniería, Universidad Nacional de Asunción, Luque 2060, Paraguay
Jesus Doval-Gandoy
Applied Power Electronics Technology Research Group (APET), Universidad de Vigo, 36310 Vigo, Spain
Magno Ayala
Laboratory of Power and Control Systems (LSPyC), Departamento de Ingeniería Electrónica y Mecatrónica (DIEM), Facultad de Ingeniería, Universidad Nacional de Asunción, Luque 2060, Paraguay
Osvaldo Gonzalez
Laboratory of Power and Control Systems (LSPyC), Departamento de Ingeniería Electrónica y Mecatrónica (DIEM), Facultad de Ingeniería, Universidad Nacional de Asunción, Luque 2060, Paraguay
This paper develops an inner stator current controller based on an enhanced reaching-law-based discrete-time terminal sliding mode. The problem of tracking stator currents with high accuracy while ensuring the robustness of a six-phase induction motor in the presence of uncertain electrical parameters and unmeasurable states is tackled. The unknown dynamics are approximated by using a time delay estimation method. Then, an enhanced power-reaching law is used to make each stage of the convergence faster. A stability analysis and the system controller’s finite-time convergence are demonstrated in detail. Practical work was conducted on an asymmetrical six-phase induction machine to illustrate the developed discrete approach’s robustness and effectiveness.