Ain Shams Engineering Journal (Sep 2021)
Selecting the most suitable pedotransfer functions for estimating saturated hydraulic conductivity according to the available soil inputs
Abstract
Direct measurements of saturated hydraulic conductivity (Ksat) are costly and time-consuming. Alternatively, pedotransfer functions (PTFs) have been developed to estimate Ksat in terms of readily available soil properties. The goal of this study is to evaluate forty-five PTFs of Ksat. The functions were divided into four groups according to their input requirements: EP-Ksat group (F1.1-F1.9) require the effective porosity as inputs; SSC-Ksat group (F2.1-F2.12) require (sand, silt, clay contents); SSCBD-Ksat group (F3.1-F3.8) require (sand, silt, clay contents), bulk density; and SSCBDOM-Ksat group (F4.1-F4.16) require (sand, silt, clay contents), bulk density, and organic matter content. The results showed that the best PTFs were F1.9 and F1.5 in EP-Ksat group. For the SSC-Ksat group, the PTFs F2.1, F2.11. For the SSCBD-Ksat group, the PTFs F3.5, F3.6. For SSCBDOM-Ksat group, the PTFs F4.13 and F4.8. Results of this study are helpful for predicting Ksat inputs required for large scale hydrologic models with reliability.