Algorithms (Sep 2020)

Detecting Traffic Incidents Using Persistence Diagrams

  • Eric S. Weber,
  • Steven N. Harding,
  • Lee Przybylski

DOI
https://doi.org/10.3390/a13090222
Journal volume & issue
Vol. 13, no. 9
p. 222

Abstract

Read online

We introduce a novel methodology for anomaly detection in time-series data. The method uses persistence diagrams and bottleneck distances to identify anomalies. Specifically, we generate multiple predictors by randomly bagging the data (reference bags), then for each data point replacing the data point for a randomly chosen point in each bag (modified bags). The predictors then are the set of bottleneck distances for the reference/modified bag pairs. We prove the stability of the predictors as the number of bags increases. We apply our methodology to traffic data and measure the performance for identifying known incidents.

Keywords