Cell Reports (Aug 2012)

SERF Protein Is a Direct Modifier of Amyloid Fiber Assembly

  • S. Fabio Falsone,
  • N. Helge Meyer,
  • Evelyne Schrank,
  • Gerd Leitinger,
  • Chi L.L. Pham,
  • Michelle T. Fodero-Tavoletti,
  • Mats Holmberg,
  • Martin Dulle,
  • Benjamin Scicluna,
  • Bernd Gesslbauer,
  • Hanna-Marie Rückert,
  • Gabriel E. Wagner,
  • David A. Merle,
  • Ellen A. Nollen,
  • Andreas J. Kungl,
  • Andrew F. Hill,
  • Roberto Cappai,
  • Klaus Zangger

DOI
https://doi.org/10.1016/j.celrep.2012.06.012
Journal volume & issue
Vol. 2, no. 2
pp. 358 – 371

Abstract

Read online

The inherent cytotoxicity of aberrantly folded protein aggregates contributes substantially to the pathogenesis of amyloid diseases. It was recently shown that a class of evolutionary conserved proteins, called MOAG-4/SERF, profoundly alter amyloid toxicity via an autonomous but yet unexplained mode. We show that the biological function of human SERF1a originates from its atypical ability to specifically distinguish between amyloid and nonamyloid aggregation. This inherently unstructured protein directly affected the aggregation kinetics of a broad range of amyloidogenic proteins in vitro, while being inactive against nonamyloid aggregation. A representative biophysical analysis of the SERF1a:α-synuclein (aSyn) complex revealed that the amyloid-promoting activity resulted from an early and transient interaction, which was sufficient to provoke a massive increase of soluble aSyn amyloid nucleation templates. Therefore, the autonomous amyloid-modifying activity of SERF1a observed in living organisms relies on a direct and dedicated manipulation of the early stages in the amyloid aggregation pathway.