European Cells & Materials (May 2018)

Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2

  • A Rey-Rico,
  • M Silva,
  • J Couceiro,
  • A Concheiro,
  • C Alvarez-Lorenzo

DOI
https://doi.org/10.22203/eCM.v021a24
Journal volume & issue
Vol. 21
pp. 317 – 340

Abstract

Read online

In situ gelling solutions for minimally invasive local application of bone growth factors are attracting increasing attention as efficient and patient-friendly alternative to bone grafts and solid scaffolds for repairing bone defects. Poloxamines, i.e., X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers with an ethylenediamine core (Tetronic®), were evaluated both as an active osteogenic component and as a vehicle for rhBMP-2 injectable implants. After cytotoxicity screening of various poloxamine varieties, Tetronic 908, 1107, 1301 and 1307 solutions were chosen as the most cytocompatible and their sol-to-gel transitions were rheologically characterized. Viscoelastic gels, formed at 37 ºC, sustained protein release under physiological-like conditions. Formulations of rhBMP-2 led to differentiation of mesenchymal stem cells to osteoblasts, quantified as alkaline phosphatase activity with a maximum at day 7, and to mineralized nodules. Interestingly, poloxamine solely gels led to an initial proliferation of the mesenchymal stem cells (first week), followed by differentiation to osteoblasts (second to third week). Histochemical analysis revealed that Tetronic 908 is only osteoinductive; Tetronic 1107 is mostly osteoinductive, although its use leads to a minor differentiation to adipocytes; Tetronic 1307, solely or loaded with rhBMP-2, causes differentiation of both osteoblasts and adipocytes. Enhanced expression levels of CBFA-1 and collagen type I were observed for Tetronic 908, 1107 and 1307, both solely and combined with rhBMP-2. The intrinsic osteogenic activity of poloxamines (not observed for Pluronic F127) offers novel perspectives for bone regeneration using minimally invasive procedures (i.e., injectable scaffolds) and overcoming the safety and the cost/effectiveness concerns associated with large scale clinical use of recombinant growth factors.

Keywords