Scientific Reports (Feb 2021)

Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease

  • C. S. Schmidt,
  • L. Mrnka,
  • P. Lovecká,
  • T. Frantík,
  • M. Fenclová,
  • K. Demnerová,
  • M. Vosátka

DOI
https://doi.org/10.1038/s41598-021-81937-7
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Phoma stem canker (caused by the ascomycetes Leptosphaeria maculans and Leptosphaeria biglobosa) is an important disease of oilseed rape. Its effect on endophyte communities in roots and shoots and the potential of endophytes to promote growth and control diseases of oilseed rape (OSR) was investigated. Phoma stem canker had a large effect especially on fungal but also on bacterial endophyte communities. Dominant bacterial genera were Pseudomonas, followed by Enterobacter, Serratia, Stenotrophomonas, Bacillus and Staphylococcus. Achromobacter, Pectobacter and Sphingobacterium were isolated only from diseased plants, though in very small numbers. The fungal genera Cladosporium, Botrytis and Torula were dominant in healthy plants whereas Alternaria, Fusarium and Basidiomycetes (Vishniacozyma, Holtermaniella, Bjerkandera/Thanatephorus) occurred exclusively in diseased plants. Remarkably, Leptosphaeria biglobosa could be isolated in large numbers from shoots of both healthy and diseased plants. Plant growth promoting properties (antioxidative activity, P-solubilisation, production of phytohormones and siderophores) were widespread in OSR endophytes. Although none of the tested bacterial endophytes (Achromobacter, Enterobacter, Pseudomonas, Serratia and Stenotrophomonas) promoted growth of oilseed rape under P-limiting conditions or controlled Phoma disease on oilseed rape cotyledons, they significantly reduced incidence of Sclerotinia disease. In the field, a combined inoculum consisting of Achromobacter piechaudii, two pseudomonads and Stenotrophomonas rhizophila tendencially increased OSR yield and reduced Phoma stem canker.