Polymers (Aug 2022)

Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds

  • Zhijun Chen,
  • Yanbo Liu,
  • Juan Huang,
  • Ming Hao,
  • Xiaodong Hu,
  • Xiaoming Qian,
  • Jintu Fan,
  • Hongjun Yang,
  • Bo Yang

DOI
https://doi.org/10.3390/polym14163404
Journal volume & issue
Vol. 14, no. 16
p. 3404

Abstract

Read online

In this paper, near-field direct-writing melt electrospinning technology was employed to fabricate a polycaprolactone/nano-hydroxyapatite (PCL/nHA) scaffold for future applications in tissue engineering. The influences of different fabrication parameters on the structural characteristics, mechanical properties, and thermal stability of the scaffolds were discussed. It was found that the moving speed of the receiving plate had the most significant effect on the scaffold performance, followed by the receiving distance and spinning voltage. The results also showed that these process parameters affected the fiber diameter, corresponding coefficient of variation, porosity of the composite scaffolds, and mechanical properties of the samples, including the tensile strength and fiber peeling strength. Moreover, the process parameters could influence the thermal degradation performance and melting process. Although the mass loss of the composite scaffolds was not obvious after degradation, the mechanical performance degraded severely. It was concluded that the more appropriate process parameters for preparing PCL/nHA scaffolds were a spinning voltage of −4 kV, receiving distance of 4 mm, moving speed of receiving plate of 5 mm/s, and melt temperature of 130 °C. This study proved that near-field direct-writing melt electrospinning technology is a good method to obtain PCL/nHA composite scaffolds with an excellent mechanical properties and desired morphology for future tissue engineering applications.

Keywords