Journal of the American Society for Horticultural Science (Jul 2021)

Genetic Analysis of Mitochondrial Sorting from the MSC3 Mosaic Mutant of Cucumber

  • Lyle T. Wallace,
  • Michael J. Havey

DOI
https://doi.org/10.21273/JASHS05075-21
Journal volume & issue
Vol. 146, no. 5
pp. 346 – 350

Abstract

Read online

Cucumber (Cucumis sativus) plants regenerated from cell cultures occasionally possess mosaic (MSC) phenotypes on cotyledons and leaves. Lines MSC3 and MSC16 have distinct MSC phenotypes and originated from plants regenerated from different cell-culture experiments established using a highly inbred wild-type cucumber. Both the mitochondrial (mt) DNA and MSC phenotype of cucumber show paternal transmission, and MSC3 and MSC16 have different mt coding regions at significantly lower copy numbers relative to wild-type plants. A nuclear locus, Paternal sorting of mitochondria (Psm), conditions a high proportion of wild-type progenies, specifically when MSC16 is crossed as the male with wild-type female plants. During this research, we identified plants that produced a high proportion of wild-type progenies in crosses with MSC3 as the male parent. Plants from an F2 family were crossed with MSC3 as the male, progenies were scored for numbers of MSC vs. wild-type plants, and single-nucleotide polymorphisms (SNP) were identified for genetic mapping. A major quantitative trait locus on chromosome 3 was associated with a higher frequency of wild-type progenies from MSC3 as the male parent, and the 1.5-logarithm-of-odds interval for the most significant SNP was located 627 kb from Psm. These results reveal that separate genetic factors control sorting to the wild-type phenotype in progenies from crosses with different MSC parents. The identification of causal genes controlling mitochondrial sorting in cucumber should provide insight regarding nuclear-mitochondrial interactions affecting the prevalence of specific mitochondrial DNA in plants.

Keywords