Heliyon (Aug 2024)

Rapid identification model of mine water inrush source using random forest optimized by multi-strategy improved sparrow search algorithm

  • Jierui Ling,
  • Zhibo Fu,
  • Kailong Xue

Journal volume & issue
Vol. 10, no. 15
p. e35708

Abstract

Read online

Mine water inrush accident is one of the most threatening disasters in coal mine production process. In order to improve the identification accuracy of mine water inrush source, a fast identification method of mine water inrush source based on improved sparrow search (SSA) algorithm coupled with Random Forest algorithm was proposed. Firstly, taking Zhaogezhuang Mine as the research object, six factors were selected as the discriminant index and three principal components were extracted by kernel principal component analysis. Secondly, four strategies are employed to enhance the SSA for achieving the ISSA, while multiple benchmark functions are utilized to validate its performance. The extracted principal components serve as input, and the categories of water inrush sources act as output. Subsequently, the prediction results of Random Forest (RF) algorithm after optimizing hyperparameters through Improve SSA are compared with those obtained from other models. The research findings demonstrate that optimizing the RF model using Improve SSA yields superior predictive performance compared to alternative models. Finally, this model is applied to identify water inrush sources in a mine located in Shandong province. The discrimination results exhibit higher accuracy, precision, recall, and F1 index than other models, thereby confirming the reliability and stability of this approach. The results demonstrate that the kernel principal component analysis-based rapid identification model for mine water outburst source, combined with an improved sparrow search algorithm to optimize Random Forest, exhibits excellent robustness and accuracy. This model effectively fulfills the requirements of identifying mine water outbursts and provides a reliable guarantee for ensuring mining safety production.

Keywords