Nutrients (Feb 2020)

Modulation of Adhesion Process, E-Selectin and VEGF Production by Anthocyanins and Their Metabolites in an <i>in vitro</i> Model of Atherosclerosis

  • Mirko Marino,
  • Cristian Del Bo’,
  • Massimiliano Tucci,
  • Dorothy Klimis-Zacas,
  • Patrizia Riso,
  • Marisa Porrini

DOI
https://doi.org/10.3390/nu12030655
Journal volume & issue
Vol. 12, no. 3
p. 655

Abstract

Read online

The present study aims to evaluate the ability of peonidin and petunidin-3-glucoside (Peo-3-glc and Pet-3-glc) and their metabolites (vanillic acid; VA and methyl-gallic acid; MetGA), to prevent monocyte (THP-1) adhesion to endothelial cells (HUVECs), and to reduce the production of vascular cell adhesion molecule (VCAM)-1, E-selectin and vascular endothelial growth factor (VEGF) in a stimulated pro-inflammatory environment, a pivotal step of atherogenesis. Tumor necrosis factor-α (TNF-α; 100 ng mL−1) was used to stimulate the adhesion of labelled monocytes (THP-1) to endothelial cells (HUVECs). Successively, different concentrations of Peo-3-glc and Pet-3-glc (0.02 µM, 0.2 µM, 2 µM and 20 µM), VA and MetGA (0.05 µM, 0.5 µM, 5 µM and 50 µM) were tested. After 24 h, VCAM-1, E-selectin and VEGF were quantified by ELISA, while the adhesion process was measured spectrophotometrically. Peo-3-glc and Pet-3-glc (from 0.02 µM to 20 µM) significantly (p < 0.0001) decreased THP-1 adhesion to HUVECs at all concentrations (−37%, −24%, −30% and −47% for Peo-3-glc; −37%, −33%, −33% and −45% for Pet-3-glc). VA, but not MetGA, reduced the adhesion process at 50 µM (−21%; p < 0.001). At the same concentrations, a significant (p < 0.0001) reduction of E-selectin, but not VCAM-1, was documented. In addition, anthocyanins and their metabolites significantly decreased (p < 0.001) VEGF production. The present findings suggest that while Peo-3-glc and Pet-3-glc (but not their metabolites) reduced monocyte adhesion to endothelial cells through suppression of E-selectin production, VEGF production was reduced by both anthocyanins and their metabolites, suggesting a role in the regulation of angiogenesis.

Keywords