Frontiers in Psychiatry (Oct 2011)

Use of High resolution 3D Diffusion tensor imaging to study brain white matter development in live neonatal rats

  • Yu eCai,
  • Matthew eMcMurray,
  • Ipek eOguz,
  • Hong eYuan,
  • Martin eStyner,
  • Weili eLin,
  • Josephine eJohns,
  • Hongyu eAn

DOI
https://doi.org/10.3389/fpsyt.2011.00054
Journal volume & issue
Vol. 2

Abstract

Read online

High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and postnatal day 14 (PND14), using only 3 hours of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D RARE DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild to moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in MR images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild to moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. FA values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment.

Keywords