European Physical Journal C: Particles and Fields (May 2021)

On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region

  • L. von Detten,
  • F. Noël,
  • C. Hanhart,
  • M. Hoferichter,
  • B. Kubis

DOI
https://doi.org/10.1140/epjc/s10052-021-09169-7
Journal volume & issue
Vol. 81, no. 5
pp. 1 – 17

Abstract

Read online

Abstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of $$\pi K$$ π K scattering in a given partial wave are related to the phases of the respective $$\pi K$$ π K form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar $$\pi K$$ π K form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from $$\pi K$$ π K scattering and maintaining the correct analytic structure. As a first application, we consider the decay $${\tau \rightarrow K_S\pi \nu _\tau }$$ τ → K S π ν τ , in particular, we study to which extent the S-wave $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and the P-wave $$K^*(1410)$$ K ∗ ( 1410 ) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator. Finally, we extract the pole parameters of the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and $$K_0^*(1950)$$ K 0 ∗ ( 1950 ) resonances via Padé approximants, $$\sqrt{s_{K_0^*(1430)}}=[1408(48)-i\, 180(48)]\,\text {MeV}$$ s K 0 ∗ ( 1430 ) = [ 1408 ( 48 ) - i 180 ( 48 ) ] MeV and $$\sqrt{s_{K_0^*(1950)}}=[1863(12)-i\,136(20)]\,\text {MeV}$$ s K 0 ∗ ( 1950 ) = [ 1863 ( 12 ) - i 136 ( 20 ) ] MeV , as well as the pole residues. A generalization of the method also allows us to formally define a branching fraction for $${\tau \rightarrow K_0^*(1430)\nu _\tau }$$ τ → K 0 ∗ ( 1430 ) ν τ in terms of the corresponding residue, leading to the upper limit $${\text {BR}(\tau \rightarrow K_0^*(1430)\nu _\tau )<1.6 \times 10^{-4}}$$ BR ( τ → K 0 ∗ ( 1430 ) ν τ ) < 1.6 × 10 - 4 .