PLoS ONE (Jan 2014)

Beta-endorphin 1-31 biotransformation and cAMP modulation in inflammation.

  • Naghmeh Hajarol Asvadi,
  • Michael Morgan,
  • Herath M Herath,
  • Amitha K Hewavitharana,
  • P Nicholas Shaw,
  • Peter J Cabot

DOI
https://doi.org/10.1371/journal.pone.0090380
Journal volume & issue
Vol. 9, no. 3
p. e90380

Abstract

Read online

A large body of evidence now exists for the immune cell expression, production, and the release of beta-endorphin (BE 1-31) within inflamed tissue. The inflammatory milieu is characterised by increased acidity, temperature and metabolic activity. Within these harsh conditions BE 1-31 is even more susceptible to increased enzymatic degradation over that of plasma or other non-injured tissue. To elucidate the biotransformation pathways of BE 1-31 and provide an insight to the impact of inflamed tissue environments, BE 1-31 and three of its major N-terminal fragments (BE 1-11, BE 1-13 and BE 1-17) were incubated in inflamed tissue homogenates at pH 5.5 for 2 hrs. In addition, the potency of BE 1-31 and five main N--terminal fragments (BE 1-9, BE 1-11, BE 1-13, BE 1-17, BE 1-20) was assessed at mu-opioid receptors (MOR), delta-opioid receptors (DOR), and kappa-opioid receptors (KOR). Opioid receptor potency was investigated by examining the modulation of forskolin induced cAMP accumulation. The majority of the N-terminal fragment of BE 1-31 had similar efficacy to BE 1-31 at MOR. The shortest of the major N-terminal fragments (BE 1-9), had partial agonist activity at MOR but possessed the highest potency of all tested peptides at DOR. There was limited effect for BE 1-31 and the biotransformed peptides at KOR. Major N-terminal fragments produced within inflamed tissue have increased presence within inflamed tissue over that of the parent molecule BE 1-31 and may therefore contribute to BE 1-31 efficacy within disease states that involve inflammation.