Current Issues in Molecular Biology (Aug 2024)
Is Copper Still Safe for Us? What Do We Know and What Are the Latest Literature Statements?
Abstract
Copper (Cu) is a precious metal and one of the three most abundant trace elements in the body (50–120 mg). It is involved in a large number of cellular mechanisms and pathways and is an essential cofactor in the function of cellular enzymes. Both its excess and deficiency may be harmful for many diseases. Even small changes in Cu concentration may be associated with significant toxicity. Consequently, it can be damaging to any organ or tissue in our body, beginning with harmful effects already at the molecular level and then affecting the degradation of individual tissues/organs and the slow development of many diseases, such as those of the immunological system, skeletal system, circulatory system, nervous system, digestive system, respiratory system, reproductive system, and skin. The main purpose of this article is to review the literature with regard to both the healthiness and toxicity of copper to the human body. A secondary objective is to show its widespread use and sources, including in food and common materials in contact with humans. Its biological half-life from diet is estimated to range from 13 to 33 days. The retention or bioavailability of copper from the diet is influenced by several factors, such as age, amount and form of copper in the diet, lifestyle, and genetic background. The upper limit of normal in serum in healthy adults is approximately 1.5 mg Cu/L, while the safe upper limit of average intake is set at 10–12 mg/day, the reference limit at 0.9 mg/day, and the minimum limit at 0.6–0.7 mg/day. Cu is essential, and in the optimal dose, it provides antioxidant defense, while its deficiency reduces the body’s ability to cope with oxidative stress. The development of civilization and the constant, widespread use of Cu in all electrical devices will not be stopped, but the health of people directly related to its extraction, production, or distribution can be controlled, and the inhabitants of nearby towns can be protected. It is extremely difficult to assess the effects of copper on the human body because of its ubiquity and the increasing reports in the literature about its effects, including copper nanoparticles.
Keywords