L-Lactate Electrochemical Biosensor Based on an Integrated Supramolecular Architecture of Multiwalled Carbon Nanotubes Functionalized with Avidin and a Recombinant Biotinylated Lactate Oxidase
Alejandro Tamborelli,
Michael López Mujica,
Marilla Amaranto,
José Luis Barra,
Gustavo Rivas,
Agustina Godino,
Pablo Dalmasso
Affiliations
Alejandro Tamborelli
CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, Córdoba 5016, Argentina
Michael López Mujica
INFIQC, CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Marilla Amaranto
CIQUIBIC, CONICET-UNC, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
José Luis Barra
CIQUIBIC, CONICET-UNC, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Gustavo Rivas
INFIQC, CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Agustina Godino
CIQUIBIC, CONICET-UNC, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Pablo Dalmasso
CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, Córdoba 5016, Argentina
L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in Escherichia coli through in vivo biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS). The amperometric detection of L-lactate was performed at −0.100 V, with a linear range between 100 and 700 µM, a detection limit of 33 µM, and a quantification limit of 100 µM. The proposed biosensor (GCE/MWCNT-Av/bLOx) showed a reproducibility of 6.0% and it was successfully used for determining L-lactate in food and enriched serum samples.