Geochemistry, Geophysics, Geosystems (Apr 2020)

Middle to Late Pleistocene Evolution of the Bengal Fan: Integrating Core and Seismic Observations for Chronostratigraphic Modeling of the IODP Expedition 354 8° North Transect

  • Brendan T. Reilly,
  • Fenna Bergmann,
  • Michael E. Weber,
  • Joseph S. Stoner,
  • Peter Selkin,
  • Laure Meynadier,
  • Tilmann Schwenk,
  • Volkhard Spiess,
  • Christian France‐Lanord

DOI
https://doi.org/10.1029/2019GC008878
Journal volume & issue
Vol. 21, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract We investigate chronology and age uncertainty for the middle to upper Pleistocene lower Bengal Fan using a novel age‐depth modeling approach that factors lithostratigraphic, magnetostratigraphic, biostratigraphic, cyclostratigraphic, and seismic stratigraphic constraints, based on results from the International Ocean Discovery Program Expedition 354 Bengal Fan and analysis of the GeoB97‐020/027 seismic line. The initial chronostratigraphic framework is established using regionally extensive hemipelagic sediment units, and only age‐depth models of fan deposits that respect the superposition of channel‐levee systems between sites are accepted. In doing so, we reconstruct signals of regional sediment accumulation rate and lithogenic sediment input through the perspective of a two‐dimensional ~320 km transect at 8°N that are consistent with more distal and more ambiguous regional records. This chronology allows us to discuss the depositional history of the middle to upper Pleistocene lower Bengal Fan within the context of sea level, climate, and tectonic controls. We hypothesize, based on the timing of accumulation rate changes, that progradation and intensification of the Bengal Fan's channel‐levee system at 8°N was largely driven by increases in sea level amplitude during this time. However, it is also possible this progradation was influenced by changes in Pleistocene climate and increased Himalayan erosion rates, driving greater sediment flux to the fan.

Keywords