Biochemistry and Biophysics Reports (Jul 2021)
A time course study on dose-response relationship between alcohol exposure and its effects on lipid profile and biomarkers of tissue damage
Abstract
This present research investigated variations in lipid profiles and important biomarkers of tissue damage in response to graded concentrations of alcohol administration in male Wistar rats. Group A (control) received distilled water while group B, C and D received 30%, 40% and 50% (v/v) alcohol respectively. Five rats each from groups A-D were sacrificed after day(s) 1, 7, 14, 21 and 28 of administration. A significant increase was observed at day 28 for serum cholesterol by 79% (group B), 78% (group C) and 47% (group D) together with serum phospholipid 58% (group B), 50% (group C) and 92% (group D). Serum triacylglycerol increased by 71% (group B), 43% (group C) and 16% (group D) at day 21, while concentration of serum albumin decreased at day 28 by 40.9% (group B), 50.2% (group C), 53.3% (group D) respectively when compared with control (group A). Serum aminotransferases and alkaline phosphatase specific activities, as well as creatinine and uric acid concentration increased in a concentration-dependent manner, following alcohol administration. Though most of these effects induced by alcohol were time- and concentration-dependent, 40% alcohol appear to be more stable, giving results consistent with alcohol-induced damages, with minimal mortality. This study therefore further validated dyslipidemia and imbalance in clinical biomarkers as hallmarks of tissue damage induced by excessive alcohol consumption with an insight on the time- and concentration-response relationship between alcohol consumption and its toxicity.