Membranes (Jun 2023)
Sintering Aid Strategy for Promoting Oxygen Reduction Reaction on High-Performance Double-Layer LaNi<sub>0.6</sub>Fe<sub>0.4</sub>O<sub>3–δ</sub> Composite Electrode for Devices Based on Solid-State Membranes
Abstract
Strontium and cobalt-free LaNi0.6Fe0.4O3–δ is considered one of the most promising electrodes for solid-state electrochemical devices. LaNi0.6Fe0.4O3–δ has high electrical conductivity, a suitable thermal expansion coefficient, satisfactory tolerance to chromium poisoning, and chemical compatibility with zirconia-based electrolytes. The disadvantage of LaNi0.6Fe0.4O3–δ is its low oxygen-ion conductivity. In order to increase the oxygen-ion conductivity, a complex oxide based on a doped ceria is added to the LaNi0.6Fe0.4O3–δ. However, this leads to a decrease in the conductivity of the electrode. In this case, a two-layer electrode with a functional composite layer and a collector layer with the addition of sintering additives should be used. In this study, the effect of sintering additives (Bi0.75Y0.25O2–δ and CuO) in the collector layer on the performance of LaNi0.6Fe0.4O3–δ-based highly active electrodes in contact with the most common solid-state membranes (Zr0.84Sc0.16O2–δ, Ce0.8Sm0.2O2–δ, La0.85Sr0.15Ga0.85Mg0.15O3–δ, La10(SiO4)6O3–δ, and BaCe0.89Gd0.1Cu0.01O3–δ) was investigated. It was shown that LaNi0.6Fe0.4O3–δ has good chemical compatibility with the abovementioned membranes. The best electrochemical activity (polarization resistance about 0.02 Ohm cm2 at 800 °C) was obtained for the electrode with 5 wt.% Bi0.75Y0.25O1.5 and 2 wt.% CuO in the collector layer.
Keywords