Applied Sciences (May 2024)

Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of <i>Sophora viciifolia</i> Seedlings under Drought Conditions

  • Xin Rao,
  • Yujun Zhang,
  • Yang Gao,
  • Lili Zhao,
  • Puchang Wang

DOI
https://doi.org/10.3390/app14114359
Journal volume & issue
Vol. 14, no. 11
p. 4359

Abstract

Read online

This study investigates the role of abscisic acid (ABA) in bolstering drought resistance in plants, employing “Panjiang Sophora viciifolia” as the subject. A simulated drought scenario was created using polyethylene glycol (PEG-6000) to examine the impact of varying drought intensities (0%, 5%, 20% PEG) and ABA concentrations (0, 10, 50, 100, 200 mg·L−1) on the germination and physiological parameters of Sophora viciifolia. The results showed that in the absence of ABA, the germination rate (GR), germination potential (GP), and germination index (GI) of S. viciifolia seeds initially increased and then decreased with escalating PEG-induced drought stress. At PEG-induced drought stress levels of 5% and 20%, the activities of peroxidase (POD) and catalase (CAT), along with the malondialdehyde (MDA) content, were significantly higher than in the control (CK) (p S. viciifolia seeds adapted by modulating germination behavior, augmenting the content of osmoregulatory substances, and boosting the activity of protective enzymes. The addition of ABA markedly enhanced GR, GE, GI, activities of POD, superoxide dismutase (SOD), and CAT, as well as the levels of MDA and proline (Pro) under drought conditions (p −1) resulted in increased GR, GP, GI, POD, SOD, CAT, MDA, and Pro levels; whereas, at a higher concentration (200 mg·L−1), although GR, GP, and GI decreased, POD, SOD, CAT, MDA, and Pro levels increased. Through principal component analysis and membership function comprehensive evaluation, it was determined that administering 50 mg·L−1 ABA was most effective in enhancing drought resistance in S. viciifolia seedlings.

Keywords