Fibers (Apr 2022)

Preparation, Characterization, and Surface Modification of Cellulose Nanocrystal from Lignocellulosic Biomass for Immobilized Lipase

  • Elvi Restiawaty,
  • Neng Tresna Umi Culsum,
  • Norikazu Nishiyama,
  • Yogi Wibisono Budhi

DOI
https://doi.org/10.3390/fib10040033
Journal volume & issue
Vol. 10, no. 4
p. 33

Abstract

Read online

This study reports the synthesis of cellulose nanocrystal (CNC) from sugarcane bagasse and rice straw as the matrix for immobilized lipase enzyme. The CNC surface was modified using cetyltrimethylammonium bromide (CTAB) to improve the interaction of CNC with glutaraldehyde so that CNC can immobilize lipase effectively. The results showed that after surface modification of CNC using CTAB with concentrations of 2–10 mM, the crystallinity of CNC slightly decreased. The presence of immobilized lipase on the modified CNC was confirmed visibly by the appearance of dark spots using transmission electron microscopy (TEM). The bond formed between the enzyme and CNC was approved using Fourier transform infrared spectroscopy (FTIR). FTIR results show a new amine group peak in the immobilized lipase, which is not present in the modified CNC itself. The modified CNC, both from bagasse (SB-20 A1-1) and rice straw (RS-20 B1-1), was successfully applied to the immobilized lipase enzyme with a yield of 88%. The observed free enzyme activity was 3.69 µmol/min∙mL. The degree of hydrolysis of canola oil relative to free lipase (100%) from immobilized lipase at lipase SB-20 A1-1 and lipase RS-20 A1-1 was 23% and 30%, respectively. Therefore, this study successfully immobilized lipase and applied it to the hydrolysis of triglycerides.

Keywords