Atmosphere (May 2024)

The Influence of Sudden Stratospheric Warming on the Development of Ionospheric Storms: The Alma-Ata Ground-Based Ionosonde Observations

  • Galina Gordiyenko,
  • Artur Yakovets,
  • Yuriy Litvinov,
  • Alexey Andreev

DOI
https://doi.org/10.3390/atmos15060626
Journal volume & issue
Vol. 15, no. 6
p. 626

Abstract

Read online

This paper examines the response of the ionosphere to the impact of two moderate geomagnetic storms observed on January 17 and 26–27, 2013, under conditions of strong sudden stratospheric warming. The study uses data from ground-based ionosonde measurements at the Alma-Ata ionospheric station (43.25 N, 76.92 E) combined with optical observation data (The Spectral Airglow Temperature Imager (SATI)). Ionosonde data showed that the geomagnetic storms under consideration do not generate ionospheric storms but demonstrate some unusual types of diurnal foF2 variations with large (up to 60%) deviations in foF2 from median values observed during the night/morning periods on 13–15 and 20–23 January, which do not have any relation to solar or geomagnetic activity. Wave-like disturbances in ΔfoF2, Δh’F, and daily averaged foF2 values with a quasi-period of 5–8 days and peak-to-peak amplitude from about 1 MHz to 2 MHz (~from 20% to ~40%) and ~40 km are observed during the period 9–28 January, after registration of the occurrence of the major SSW event on 6–7 January. The observed variations in the OH emission rate are found to be quite similar to those observed in the ionospheric parameters that assume a community of processes in the stratosphere/mesosphere/ionosphere system. The study shows that the F region of the ionosphere is influenced by processes in the lower ionosphere, in this case by processes associated with sudden stratospheric warming SSW-2013, which led to modification of the structure of the ionosphere and compensation of processes associated with the development of the ionospheric storms.

Keywords