Journal of Agricultural Machinery (Feb 2013)

Investigation of Apple Vibration Characteristics Using Finite Element Modal Analysis

  • R Mirzaei,
  • S Minaei,
  • M.H Khoshtaghaza,
  • A.M Borghaee

DOI
https://doi.org/10.22067/jam.v3i1.19714
Journal volume & issue
Vol. 3, no. 1
pp. 48 – 57

Abstract

Read online

The most important quality indicator of fruits is the flesh firmness which is well correlated to their young’s modulus. In this research variation of vibration characteristics (shape modes, natural frequency) of apple due to change of material characteristics (density, young's models, Poisson ratio) and apple volume was investigated using Finite Element simulation. An image processing technique was used to obtain an unsymmetrical and non-spherical geometric model of apple. The exact three-dimensional shape of the fruit was created by determining the coordinates of apple surface and forming uneven rotational curvatures. Modal analysis with no boundary constraints has been applied. The first 20 Eigen frequencies and the corresponding mode shape were determined. Six rigid body modes possess zero resonant frequency which is related to the degree of freedom of a rigid body in space indicated the validity of finite element model. The modal analysis results showed that resonant frequency increased by increasing young's modulus of the fruit, while it decreased by increasing apple density. First mode torsion has a mean resonant frequency of 584 Hz. Variations of natural frequency due to change in young's modulus, density, and Poisson ratio were 80%, 11% and 4%, respectively. Coefficient of variation of resonant frequency in response to changing young's modulus was 2-3 times of that of density which shows the greatest effect of young modulus changes on natural frequency of fruits. Consequently with determination of fruits' natural frequency, their young modulus and firmness can be estimated.

Keywords