Vìsnik Dnìpropetrovsʹkogo Unìversitetu: Serìâ Bìologìâ, Ekologìâ (Jul 2015)
Influence of aerogenic contamination on phytoncide activity of woody plants
Abstract
The main objective of this paper is to determine variations of antimicrobial activity of the volatile organic compounds from leaves of woody plants, which are growing on the areas with the different air pollution degree in the south-east of Ukraine. The research objects were Aesculus hippocastanum L., Betula pendula Roth, Salix alba L., Picea pungens Engelm. in Donetsk, Ukraine, and 6 species (Betula pendula Roth, Fraxinus excelsior L., Robinia pseudoacacia L., Populus nigra L., Tilia cordata Mill., Picea pungens Engelm.) in Kramatorsk, Ukraine. Samples were collected in Donetsk every month during 2012 and 2013 years on four sample areas. Three research areas border with Donetsk Metallurgical Plant PSC, heavy traffic road and Kalinin coal mine, that feature such pollutants as CO2, SO2, NO2, and marsh gas. The fourth research area is the recreation zone (Donetsk Culture and Leisure Park near Donbass Arena stadium). The control area is located in the Donetsk Botanical Garden. The leaves from trees in Kramatorsk were collected in July and August 2013 on the sample area. The research area borders with Novokramatorsk Machine-building Plant JSC, which also features CO2, SO2, NO2 and other pollutants. The control area is located in the Jubilejnyi park. The research proves that antimicrobial activity of the volatile organic compounds from leaves of species under studyis sensitive to the impact of pollutants. Moreover, the antimicrobial activity of leaves B. pendula, S. alba, F. excelsior, R. pseudoacacia, P. nigra increases under the influence of pollutants from metallurgical plants and traffic exhausts. The antimicrobial ability of A. hippocastanum, T. cordata and P. pungens enhances in the areas with the cleaner air. These species are not gas-resistant species. Consequently, gas-resistant species feature the higher antimicrobial activity in the conditions of contamination. The other benefit of this study consists in monitoring of the seasonal antimicrobial activity of trees which are growing in Donetsk. The deciduous species have the highest antimicrobial activity in summer. P. pungens demonstrates two peaks of antimicrobial activity. Aerogenic pollution with gas and particulate matter limits the antimicrobial activity of woody species. It should be noted that antimicrobial activity increases to some limit value, which is connected with the vital capacity of plants. The paper offers to use the antimicrobial activity of the volatile organic compounds of trees as one of phyto-indication tests under the influence of CO2, SO2 and NO2.
Keywords