Neurobiology of Disease (Sep 2018)

Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury

  • Xin Xu,
  • Dongpei Yin,
  • Honglei Ren,
  • Weiwei Gao,
  • Fei Li,
  • Dongdong Sun,
  • Yingang Wu,
  • Shuai Zhou,
  • Li Lyu,
  • Mengchen Yang,
  • Jianhua Xiong,
  • Lulu Han,
  • Rongcai Jiang,
  • Jianning Zhang

Journal volume & issue
Vol. 117
pp. 15 – 27

Abstract

Read online

The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated inflammatory response has emerged as a prominent contributor to the pathophysiological processes of traumatic brain injury (TBI). Recently, a potent, selective, small-molecule NLRP3 inflammasome inhibitor, MCC950, was described. Here, we investigated the effect of MCC950 on inflammatory brain injury and long-term neurological outcomes in a mouse model of TBI. Male C57/BL6 mice were subjected to TBI using the controlled cortical impact injury (CCI) system. Western blotting, flow cytometry, and immunofluorescence assays were utilized to analyze post-traumatic NLRP3 inflammasome expression and determine its cellular source. We found that NLRP3 inflammasome expression was significantly increased in the peri-contusional cortex and that microglia were the primary source of this expression. The effects of MCC950 on mice with TBI were then determined using post-assessments including analyses of neurological deficits, brain water content, traumatic lesion volume, neuroinflammation, blood-brain barrier (BBB) integrity, and cell death. MCC950 treatment resulted in a better neurological outcome after TBI by alleviating brain edema, reducing lesion volume, and improving long-term motor and cognitive functions. The therapeutic window for MCC950 against TBI was as long as 6 h. Furthermore, the neuroprotective effect of MCC950 was associated with reduced microglial activation, leukocyte recruitment, and pro-inflammatory cytokine production. In addition, MCC950 preserved BBB integrity, alleviated TBI-induced loss of tight junction proteins, and attenuated cell death. Notably, the efficacy of MCC950 was abolished in microglia-depleted mice. These results indicate that microglia-derived NLRP3 inflammasome may be primarily involved in the inflammatory response to TBI, and specific NLRP3 inflammasome inhibition using MCC950 may be a promising therapeutic approach for patients with TBI.

Keywords