Annals of Intensive Care (Nov 2020)

Rescue therapy with inhaled nitric oxide and almitrine in COVID-19 patients with severe acute respiratory distress syndrome

  • François Bagate,
  • Samuel Tuffet,
  • Paul Masi,
  • François Perier,
  • Keyvan Razazi,
  • Nicolas de Prost,
  • Guillaume Carteaux,
  • Didier Payen,
  • Armand Mekontso Dessap

DOI
https://doi.org/10.1186/s13613-020-00769-2
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background In COVID-19 patients with severe acute respiratory distress syndrome (ARDS), the relatively preserved respiratory system compliance despite severe hypoxemia, with specific pulmonary vascular dysfunction, suggests a possible hemodynamic mechanism for VA/Q mismatch, as hypoxic vasoconstriction alteration. This study aimed to evaluate the capacity of inhaled nitric oxide (iNO)–almitrine combination to restore oxygenation in severe COVID-19 ARDS (C-ARDS) patients. Methods We conducted a monocentric preliminary pilot study in intubated patients with severe C-ARDS. Respiratory mechanics was assessed after a prone session. Then, patients received iNO (10 ppm) alone and in association with almitrine (10 μg/kg/min) during 30 min in each step. Echocardiographic and blood gases measurements were performed at baseline, during iNO alone, and iNO–almitrine combination. The primary endpoint was the variation of oxygenation (PaO2/FiO2 ratio). Results Ten severe C-ARDS patients were assessed (7 males and 3 females), with a median age of 60 [52–72] years. Combination of iNO and almitrine outperformed iNO alone for oxygenation improvement. The median of PaO2/FiO2 ratio varied from 102 [89–134] mmHg at baseline, to 124 [108–146] mmHg after iNO (p = 0.13) and 180 [132–206] mmHg after iNO and almitrine (p < 0.01). We found no correlation between the increase in oxygenation caused by iNO–almitrine combination and that caused by proning. Conclusion In this pilot study of severe C-ARDS patients, iNO–almitrine combination was associated with rapid and significant improvement of oxygenation. These findings highlight the role of pulmonary vascular function in COVID-19 pathophysiology.

Keywords