He jishu (Oct 2023)

Gelation behavior and microstructure of ThxZr1-xO2 inert matrix fuel prepared by an external gelation process

  • HUANG He,
  • WANG Peng,
  • YAN Chao,
  • YU Xiaohe,
  • CAO Changqing,
  • LIN Jun,
  • ZHU Zhiyong

DOI
https://doi.org/10.11889/j.0253-3219.2023.hjs.46.100605
Journal volume & issue
Vol. 46, no. 10
pp. 100605 – 100605

Abstract

Read online

BackgroundInert matrix fuel (IMF) can efficiently convert plutonium and long-lived minor actinides used for preventing the proliferation of nuclear weapons and improving spent fuel disposal, hence has been becoming a hot research topic in recent years. The sol-gel method has the advantage of uniform elemental distribution of the products and the wet operation process is less likely to produce radioactive dust, therefore, it has been used to prepare zirconium-based IMF in the research.PurposeThis study aims to prepare a colloidal solution with good dispersive properties and to obtain IMF microspheres with good sphericity, uniform size, and homogeneous elemental distribution.MethodsFirst of all, ThxZr1-xO2 inert matrix fuel was prepared by an external gelation process, and the sol-gel viscosity was used as the main gelation index. Then, the variation tendency of sol viscosity with c(NH4+)/c(NO3-) was investigated for different metal ions concentrations and different temperatures. Finally, the statistical distributions of colloidal particle sizes were obtained for different metal ions and reaction temperatures by laser particle sizing tests, and the X-ray diffraction (XRD) was used to study the structure of IMF after heat treatment at different temperatures.ResultsThe results showed that the complex gelation parameters and properties can be categorized and quantified using gelation field diagrams. In addition, ThxZr1-xO2 IMF kernels with uniform element distribution, good sphericity, and integral appearance were obtained by optimizing the process parameters. Zirconia showed low solubility behavior in the thorium-oxide system, leading to the generation of a biphasic structure.ConclusionsThe results of this study indicate that zirconium-based spherical IMF microspheres with good performance can be prepared by external gelation method.

Keywords