Computational and Structural Biotechnology Journal (Dec 2024)

Structure-guided identification and characterization of potent inhibitors targeting PhoP and MtrA to combat mycobacteria

  • Han-Li Su,
  • Shu-Jung Lai,
  • Keng-Chang Tsai,
  • Kit-Man Fung,
  • Tse-Lin Lung,
  • Hsing-Mien Hsu,
  • Yi-Chen Wu,
  • Ching-Hui Liu,
  • Hui-Xiang Lai,
  • Jiun-Han Lin,
  • Tien-Sheng Tseng

Journal volume & issue
Vol. 23
pp. 1477 – 1488

Abstract

Read online

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP–DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 μM) and ST132 (KD = 14.5 ± 0.1 μM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal β-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.

Keywords