Remote Sensing (Sep 2022)

Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2

  • Milad Niroumand-Jadidi,
  • Francesca Bovolo,
  • Mariano Bresciani,
  • Peter Gege,
  • Claudia Giardino

DOI
https://doi.org/10.3390/rs14184596
Journal volume & issue
Vol. 14, no. 18
p. 4596

Abstract

Read online

The Landsat series has marked the history of Earth observation by performing the longest continuous imaging program from space. The recent Landsat-9 carrying Operational Land Imager 2 (OLI-2) captures a higher dynamic range than sensors aboard Landsat-8 or Sentinel-2 (14-bit vs. 12-bit) that can potentially push forward the frontiers of aquatic remote sensing. This potential stems from the enhanced radiometric resolution of OLI-2, providing higher sensitivity over water bodies that are usually low-reflective. This study performs an initial assessment on retrieving water quality parameters from Landsat-9 imagery based on both physics-based and machine learning modeling. The concentration of chlorophyll-a (Chl-a) and total suspended matter (TSM) are retrieved based on physics-based inversion in four Italian lakes encompassing oligo to eutrophic conditions. A neural network-based regression model is also employed to derive Chl-a concentration in San Francisco Bay. We perform a consistency analysis between the constituents derived from Landsat-9 and near-simultaneous Sentinel-2 imagery. The Chl-a and TSM retrievals are validated using in situ matchups. The results indicate relatively high consistency among the water quality products derived from Landsat-9 and Sentinel-2. However, the Landsat-9 constituent maps show less grainy noise, and the matchup validation indicates relatively higher accuracies obtained from Landsat-9 (e.g., TSM R2 of 0.89) compared to Sentinel-2 (R2 = 0.71). The improved constituent retrieval from Landsat-9 can be attributed to the higher signal-to-noise (SNR) enabled by the wider dynamic range of OLI-2. We performed an image-based SNR estimation that confirms this assumption.

Keywords