Current Issues in Molecular Biology (Apr 2024)
Recent Therapeutic Gene Editing Applications to Genetic Disorders
Abstract
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.
Keywords