Nanophotonics (Nov 2023)

Large-scale synthesis and exciton dynamics of monolayer MoS2 on differently doped GaN substrates

  • Jian Pengcheng,
  • Cai Xueqing,
  • Zhao Yongming,
  • Li Dongyan,
  • Zhang Zheng,
  • Liu Weijie,
  • Xu Dan,
  • Liang Wenxi,
  • Zhou Xing,
  • Dai Jiangnan,
  • Wu Feng,
  • Chen Changqing

DOI
https://doi.org/10.1515/nanoph-2023-0503
Journal volume & issue
Vol. 12, no. 24
pp. 4475 – 4484

Abstract

Read online

Mixed dimensional van der Waals heterostructure based on layered two-dimensional molybdenum disulfide (MoS2) interfaced to gallium nitride (GaN) has attracted tremendous attention due to its unique properties and application in novel electronic, optoelectronic, and quantum devices. However, developing facile synthesis methods and insights into the exciton dynamics for this system still remains a major challenge. Here, a simple and cost-effective method is demonstrated for large-scale synthesis of monolayer MoS2 on differently doped GaN substrates. A mixed aqueous solution of Na2MoO4 and NaOH is spin-coated on GaN and sulfurated in one step by chemical vapor deposition (CVD). High quality monolayer MoS2 nanosheets with side length over 400 μm and surface coverage ratio of more than 90 % are achieved on GaN. Furthermore, the PL intensity, excitonic transition ratios and ultrafast exciton dynamics of MoS2 are observed to be largely modulated by the doping type of GaN, owing to substrate-induced doping, which is proved by Raman, PL and transient absorption spectroscopy. Notably, p-GaN can attract electrons from monolayer MoS2 and weaken its intrinsic n-doping, thereby facilitating higher PL intensity as well as longer exciton lifetime, while n-GaN provides strong n-doping and generates opposite effect. This work hereby presents a pathway for large-scale synthesis of MoS2/GaN heterostructures and further understanding of their charge transfer properties and exciton dynamics, which should inspire their applications for optoelectronic devices.

Keywords