Marine Drugs (Apr 2021)

Synthesis and Bioactivities of Marine Pyran-Isoindolone Derivatives as Potential Antithrombotic Agents

  • Yinan Wang,
  • Hui Chen,
  • Ruilong Sheng,
  • Zhe Fu,
  • Junting Fan,
  • Wenhui Wu,
  • Qidong Tu,
  • Ruihua Guo

DOI
https://doi.org/10.3390/md19040218
Journal volume & issue
Vol. 19, no. 4
p. 218

Abstract

Read online

2,5-Bis-[8-(4,8-dimethyl-nona-3,7-dienyl)-5,7-dihydroxy-8-methyl-3-keto-1,2,7,8-teraahydro-6H-pyran[a]isoindol-2-yl]-pentanoic acid (FGFC1) is a marine pyran-isoindolone derivative isolated from a rare marine microorganism Stachybotrys longispora FG216, which showed moderate antithrombotic(fibrinolytic) activity. To further enhance its antithrombotic effect, a series of new FGFC1 derivatives (F1–F7) were synthesized via chemical modification at C-2 and C-2′ phenol groups moieties and C-1″ carboxyl group. Their fibrinolytic activities in vitro were evaluated. Among the derivatives, F1–F4 and F6 showed significant fibrinolytic activities with EC50 of 59.7, 87.1, 66.6, 82.8, and 42.3 μM, respectively, via enhancement of urokinase activity. Notably, derivative F6 presented the most remarkable fibrinolytic activity (2.72-fold than that of FGFC1). Furthermore, the cytotoxicity of derivative F6 was tested as well as expression of Fas/Apo-1 and IL-1 on HeLa cells. The results showed that, compared to FGFC1, derivative F6 possessed moderate cytotoxicity and apoptotic effect on HeLa cells (statistical significance p > 0.1), making F6 a potential antithrombotic agent towards clinical application.

Keywords